Speaker
Description
The detailed investigation of innovative solid electrolytes featuring promising properties, such as a high ionic conductivity, that make it suitable for an application in next-generation batteries is one of the key strategies to expand the understanding of corresponding structure-property-relationships which than allows for further tailoring of the materials properties as demanded.
Here, we report on the investigation of the well-known and commercially available material Li$_{6.5}$La$_{3}$Zr$_{1.5}$Nb$_{0.5}$O$_{12}$ (LLZO-Nb) by powder X-ray and powder neutron diffraction as well as by temperature-dependent synchrotron powder diffraction experiments. Based on the experimental neutron data the Li-ion diffusion pathways are analyzed applying the maximum entropy method as well as the one-particle potential formalism. The obtained results allow for a visualization of the energy landscape for Li-ion motion within the garnet structure.