Warning: We observe an increase of emails from fake travel portals like . "travelhosting.co.uk". We never send links to such portals so be vigilant!

8–10 Apr 2024
Bürgerhaus Garching
Europe/Berlin timezone
Event fully booked +++ Registration closed!

Biopolymer-Templated Deposition of Hierarchical 3D-Structured Graphene Oxide/Gold Nanoparticle Hybrids for Surface-Enhanced Raman Scattering

9 Apr 2024, 16:50
2h
Poster MLC Posters

Speaker

Yingjian Guo (Deutsches Elektronen-Synchrotron DESY)

Description

Cellulose, a well-known natural biopolymer, possesses numerous advantages such as cost-effectiveness, renewability, ease of processing, and biodegradability [1]. Due to these inherent merits, cellulose has emerged as a promising bio-based substrate capable of synergistically combining with conductive materials (e.g., metals or carbon-based materials) for diverse applications including sensors, smart windows, and bioelectronics [2]. Typically, surface-enhanced Raman scattering (SERS), an advantageous analytical technique, allows for the rapid detection and structural analysis of biological and chemical compounds through their spectral patterns in nanotechnology [3]. Crucial for SERS is fabricating the substrates with strong and reproducible enhancements of the Raman signal over large areas and with a low fabrication cost. Herein, we present a straightforward approach utilizing the layer-by-layer spray coating method to fabricate (CNF) films loaded with gold nanoparticles (AuNPs) and graphene oxide (GO) to serve as SERS substrates. To investigate the fundamental mechanisms of enhanced SERS performance, grazing incidence small-angle X-ray scattering (GISAXS) technique combined with the machine learning random forest method is employed to identify different nanostructures for predicting vibrational frequencies and Raman intensities. Therefore, our approach provides a reference for facile and scalable production of universally adaptable SERS substrates with exceptional sensitivity.

Primary author

Yingjian Guo (Deutsches Elektronen-Synchrotron DESY)

Co-authors

Jungui Zhou Constantin Harder (DESY) Guangjiu Pan (Technische Universität München, Fakultät für Physik, Lehrstuhl für Funktionelle Materialien) Suo Tu (TUM) Yusuf Bulut Prof. Sarathlal Koyiloth Vayalil (DESY/UPES) Daniel Söderberg Peter Müller-Buschbaum (TU München, Physik-Department, LS Funktionelle Materialien) Stephan Roth (DESY / KTH)

Presentation materials

There are no materials yet.