Warning: We observe an increase of emails from fake travel portals like . "travelhosting.co.uk". We never send links to such portals so be vigilant!

8–10 Apr 2024
Bürgerhaus Garching
Europe/Berlin timezone
Event fully booked +++ Registration closed!

Deciphering SASE X-ray Pulse Characteristics with β-Variational Autoencoder Networks

9 Apr 2024, 16:50
2h
Poster MLC Posters

Speaker

Gesa Goetzke (Gesa)

Description

Free electron lasers (FEL) play an important role across diverse scientific disciplines. Many experiments can benefit from a non-destructive online photon diagnostic of provided X-ray pulses. One method to obtain information about the pulse profile involves analyzing not the X-ray photons directly, but rather the energy distribution of the electrons downstream of a Self-Amplified Spontaneous Emission (SASE) undulator.
In recent times, neural networks have gained widespread recognition as potent analytical tools spanning various scientific domains. Among these, β Variational Autoencoder (β-VAE) networks stand out for their ability to discern key parameters within unlabeled datasets, even when these parameters are unknown beforehand.
This study showcases the application of β-VAEs in characterizing SASE X-ray pulses generated by the free electron laser FLASH in Hamburg. Leveraging data from a Transverse Deflecting Structure (TDS), we demonstrate the β-VAE's capacity to identify the SASE strength, a critical parameter, within real-world data from FLASH. This discovery holds promise in improving the accuracy of lasing off references and therefore enhancing the reconstruction of XUV power profiles.

Primary authors

Felix Möller (Helmholtz-Zentrum Berlin) Gesa Goetzke (Gesa) Gregor Hartmann (Helmholtz-Zentrum Berlin) Stefan Düsterer (DESY) Thorsten Otto (DESY)

Presentation materials

There are no materials yet.