Speaker
Description
It is crucial to suppress the non-radiation recombination in the hole-blocking layer (HBL) and at the interface between the HBL and active layer for performance improvement. Herein, TiOx layers are deposited onto a SnO2 layer via sputter deposition at room temperature, forming a bilayer HBL. The structure evolution of TiOx during sputter deposition is investigated via in situ grazing-incidence small-angle X-ray scattering. After sputter deposition of TiOx with a suitable thickness on the SnO2 layer, the bilayer HBL shows a suitable transmittance, smoother surface roughness, and fewer surface defects, thus resulting in lower trap-assisted recombination at the interface between the HBL and the active layer. With this SnO2/TiOx functional bilayer, the perovskite solar cells exhibit higher power conversion efficiencies than the unmodified SnO2 monolayer devices.