It is known that ionic liquids enhance the exploit of resources from pretreated wood. More cellulose and lignin is made available as valuable chemicals for biodegradable products. We monitored the pretreatment process of beech wood by an ionic liqiud in operando using small angle neutron scattering. In this dynamic process we could identify three stages: (1) the impregnation, i.e. the flooding...
Wood is an abundant hierachical biomaterial with a wide variety of current and potential uses. The technological applications of wood range from sustainable building materials to advanced functional nanomaterials made of its smallest building blocks. The wood cell walls consists of well-oriented, elongated structural units from the molecular level to the macroscale, with water being present at...
Cellulose nanofibrils (CNF) are derived from wood and thus renewable biomaterials par excellence. There nanoscale diameter, high aspect ratio, mechanical strength, and flexibility make them ideally suited as nanoscale building blocks for replacing synthetic nanocomposite materials, membranes, and templates for organic electronics and photovoltaics. Being dispersed in water, CNF dispersions...