X-ray and neutron scattering are widely used powerful techniques for probing the physical structure of materials at the molecular and supramolecular scale. With the simultaneous advent of high-speed detectors, previously unimaginable time-resolved in situ and high throughput photon and neutron experiments have become possible, with the subsequent explosion of data volumes. Data analysis is...
Magnesium (Mg)-based implants are in the focus for orthopedic applications, due to their biocompatibility and biodegradability. Depending on the alloy, the degradation behavior and integration into the bone will differ. To elucidate this complex interplay which affects all hierarchical levels of bone, synchrotron radiation-based scattering and imaging techniques are used. Specifically, we have...
Small-angle neutron scattering (SANS), combined with ab initio modeling or coarse-grain simulations, has proven to be an essential technique for obtaining structural information on proteins when classical high-resolution methods (e.g. NMR, radiocrystallography) are not possible. SANS is a low resolution technique but has the advantage of being used in solution. Above all, the “contrast...
Biological membranes are primarily composed of phospholipid-based bilayers, which serve as their fundamental structural elements. In this study, we present an approach that combines experimental neutron scattering data with molecular dynamics (MD) simulations to investigate phospholipid membrane systems. Neutron and X-ray reflectometry measurements are determined by the scattering length...
Small angle neutron scattering (SANS) is a powerful experimental technique for the investigation of soft matter and in particular biomaterials thanks to the high contrast between hydrogenated and deuterated components and its spatial resolving power in the nm scale (1-100 nm). We have used SANS to obtain details on the morphology of biomaterial nanostructures which often form multiple...