Milk proteins exhibit wide diversity of physicochemical properties which make them attractive for many pharmaceutical and food applications. Major milk proteins are β-lactoglobulin, α-lactalbumin, serum albumin, and lactoferrin. Amongst these proteins, lactoferrin and β-lactoglobulin are considered to be the most versatile in terms of physicochemical properties and mainly due to the...
The use of particles such as nanocelluloses, i.e. cellulose nanocrystals (CNC) and nanofibrils (CNF) received increasing attention for the Pickering stabilization of fluid interfaces [1]. The adsorption of nanocellulose and nanocellulose-protein composites at oil-water or air-water interfaces facilitates the formation of stable and biocompatible emulsions and foams but depends heavily on the...
The stability of food emulsions depends -beside other effects- on a complex interplay between proteins, phospholipids, oil and water. Preparing milk-based and sustainable plant-based emulsions requires good knowledge in interfacial and emulsion stabilization mechanisms, affected by the emulsion composition. To understand these mechanisms in detail different length scales from interatomic to...