Warning: We observe an increase of emails from fake travel portals like . "travelhosting.co.uk". We never send links to such portals so be vigilant!

28 August 2017 to 1 September 2017
Heinz Maier-Leibnitz Zentrum (MLZ)
Europe/Berlin timezone

Determination of effective thermal neutron macroscopic cross-section of boron carbide samples with the help of densitometry readings using film-based neutron radiography

30 Aug 2017, 17:30
1h 30m
Heinz Maier-Leibnitz Zentrum (MLZ)

Heinz Maier-Leibnitz Zentrum (MLZ)

85748 Garching near Munich, Germany
Poster Poster

Speaker

Usman Kurshid Chaudhry (Non-Destructive Testing Group, PINSTECH, PAKISTAN)

Description

Usman Khurshid Chaudhry

Non-Destructive Testing Group, Directorate of Technology, PINSTECH, PO Nilore, 45650 ISLAMABAD, PAKISTAN

Email:nadeema@pinstech.org.pk

Boron carbide $\text(B_4C)$ is quite a unique material with respect to neutron imaging in the sense that its boron part is much better thermal neutron absorber whereas carbide offers greater scattering probability to thermal neutrons as compared to other structural materials of a nuclear reactor. Using film-based neutron radiographic technique, it is thus possible to obtain high contrast images of the subject material from where the effective thermal-neutron macroscopic cross-section ($\sum_{eff}$) can be determined with the help of densitometry readings. The transmitted part of thermal neutron flux can be estimated by the densitometry readings acquired from relatively whiter portion on an emulsion film which was occupied by the investigated sample during thermal neutron exposure whereas the incident flux is represented by the surrounding dark regions. In this paper a method is presented that can determine the value of $\sum_{eff}$ of investigated $(B_4C)$ samples having density around $1.95 gm / cm^3$. In all the samples natural boron was used (i.e. $\approx$ 20 % $^{10}B$ and $\approx$ 80 % $^{11}B)$ along with 07 % (by weight) poly-urethane as binder. The average value of the effective thermal neutron macroscopic cross-section is found to be 0.41 $\text{cm}^{-1}$. In future, similar procedure is planned to be exercised on digital neutron images of the same material.

Image
[Please note that the radiographic film moves from the end position (in case of neutron exposure) to the centre position (in case of densitometer).]

Primary author

Usman Kurshid Chaudhry (Non-Destructive Testing Group, PINSTECH, PAKISTAN)

Presentation materials

There are no materials yet.