Warning: We observe an increase of emails from fake travel portals like . "travelhosting.co.uk". We never send links to such portals so be vigilant!

Dec 8 – 10, 2020 Online only
Online event
Europe/Berlin timezone

Frequency-based decay electron spectroscopy

Dec 8, 2020, 1:00 PM
Online event

Online event

Invited talk UM: Nuclear, Particle, and Astrophysics MLZ Users 2020 - Nuclear, Particle, and Astrophysics


Martin Fertl (Johannes Gutenberg Universität Mainz)


Precision measurements of $\beta-$decay spectra can provide exquisitely sensitive tests of various predictions and underlying symmetry assumptions of the Standard Model (SM) of Particle Physics. Possible symmetry violations can alter the shape of $\beta$-decay spectra in characteristic ways. Beyond SM physics e.g. causes the finite masses of neutrinos that alter the $\beta-$decay spectrum of tritium in a predictable but still undetectable way. In a first step to design an experiment with a sensitivity of $40\,\mathrm{meV/c^2}$ to the neutrino mass scale the Project 8 collaboration has recently demonstrated a novel, frequency-based electron spectroscopy technique. Cyclotron Radiation Emission Spectroscopy (CRES) determines the electron's kinetic energy from the feeble cyclotron radiation emitted by an electron spiralling in a magnetic trap. I will present the basics of CRES and results obtained with mono-energetic conversion electrons from $^{83\mathrm{m}}\mathrm{Kr}$ as well as preliminary results from measurements using molecular tritium. I will discuss the prospect of CRES in the context of precision $\beta-$decay experiments of the next generation, in particular with a focus on the neutron decay spectrum.
This work has been supported by the Cluster of Excellence "PRISMA+" (EXC 2118/1) funded by the German Research Foundation (DFG) within the German Excellence Strategy (Project ID 39083149), the US DOe and NSF and by internal investments at all collaborating institutions.

Primary author

Martin Fertl (Johannes Gutenberg Universität Mainz)

Presentation materials

There are no materials yet.