Conveners
MLZ Users 2020 - Materials Science: Part 1/3
- Ralph Gilles
- Michael Hofmann
MLZ Users 2020 - Materials Science: Part 2/3
- Michael Hofmann
- Ralph Gilles
MLZ Users 2020 - Materials Science: Part 3/3
- Ralph Gilles
- Michael Hofmann
Nowadays, lead acid batteries still offer a reliable and cost-effective solution compared to lithium-ion batteries, which can be adapted to different types of energy storage applications. After more than 150 years of use, the energy density of these batteries still presents substantial room for improvement. Our research group is monitoring the processes, which occur inside lead acid batteries...
Superalloys are key materials for energy conversion in jet engines, rockets or power plants. For more than 60 years, Ni-based superalloys are in use. Due to their unique two-phase microstructure, they retain their strength up to 70% of their melting temperature. In 2006, a new, ternary Co3(Al,W) compound was discovered that enabled the development of Co-based superalloys with similar...
Bulk metallic glasses combine a spectrum of favorable mechanical and chemical properties. Especially Titanium-based bulk metallic glasses are demanded for lightweight construction and for medical devices. However, the presence of toxic Beryllium and the limited casting thickness restricts the production of Titanium-based bulk metallic glasses. Recently, Sulfur was recognized as alloying...
Silicon anodes for lithium ion batteries (LIBs) exhibit a high theoretical capacity of 3590 mA h g$^{-1}$ – one magnitude higher than commonly used graphite – but they suffer a large volume expansion of around 300 % during cycling. The formation and composition of the solid electrolyte interface (SEI) in LIBs has a huge impact on the stability and performance of the cell. Coatings of only 10...
Commercial Lithium-Ion Battery (LIB) cells are mostly based on graphite as anode material. During the first inter¬calation of Li into graphite, the electrolyte gets reduced at the anode, forming a nm-thick surface layer, the so-called solid electrolyte interphase (SEI). The SEI stops further electrolyte reduction but consumes Li during its formation. Neutron depth profiling (NDP) is a...
Interfaces between iron oxide nanoparticles (IONP) and water are of great importance in various fields spanning biomedicine, waste water treatment and catalysis. Recently, we could distinguish adsorbed water species and extended hydration layers around IONPs via a double-difference X-ray pair distribution function (dd-PDF) analysis.1 Details of the interfacial hydrogen bond network shall now...
The determination of residual stresses becomes more complicated with increasing complexity of the structures investigated. Unlike most of the fabrication techniques, laser powder bed fusion allows the production of lattice structures without any additional manufacturing step. These lattice structures consist of thin struts and are thus susceptible to internal stress-induced deformation. In the...
Concentrated solid solution alloys (CSA) with no principle alloying element but a single randomly populated crystal structure exhibit attractive material properties, e.g., high ductility at low temperatures or high irradiation resistance. To understand such phenomena in these alloys, often also named high-entropy alloys, assessment of atomic transport including formation and migration of...
Reliable mechanical materials data are required for predicting the strain and stress state evolution during assembly, thermal cycling and powering of superconducting magnets. The ingredients for thermomechanical modelling of linear elastic and isotropic magnet materials behaviour are often available. However, taking into account anisotropic mechanical properties, the yielding and flowing of...