Clamp cells optimized for neutron scattering at low temperatures on the instruments DNS, MIRA, HEiDi, and POLI at the Heinz Maier-Leibnitz Zentrum [1] will be presented. The monobloc cell is available in two variants made of a CuBe alloy and a NiCrAl alloy, operational up to about 1.1 GPa and 1.5 GPa, respectively. Measurements aimed to elucidate magnetic properties are now possible due to the...
The itinerant ferromagnet nickel has a long history of studies investigating its spin wave and critical, paramagnetic scattering over a large range in temperature. Close to $T_C$ = 631 K, the behavior of Ni, as observed with neutron scattering, is well explained by mode coupling and renormalization group theory calculations based on the isotropic Heisenberg model. According to scaling theory,...
The quantum spin liquid (QSL) phase is of immense interest to condensed matter physicists, and have been studied for decades. With a Kitaev model that is exactly solvable and gives a QSL ground state, α-RuCl3 is a promising Kitaev QSL candidate. Above the critical magnetic field Bc~7T and below T~6K there is evidence for the half-integer quantized plateau where anomalous measurements possibly...
Magnetic excitations in stripe-phases of $La-$based hole-doped $214-$ nickelates, especially in the $Sr-$doped ones, have been vigorously explored using inelastic neutron scattering (INS) studies. In $Sr-$ doped samples, the spin stripe correlation is relatively short-ranged due to unavoidable disorder introduced by the randomly distributed dopant. However, often the results have been compared...
The pressure dependent magnetic phase diagram of chromium spinel HgCr$_2$Se$_4$ was investigated up to 6 GPa. Hydrostatic pressure was applied with purposely built diamond anvil cells. The magnetic state of the samples was probed by neutron depolarization, where a pair of focusing neutron supermirror guides was used, increasing the signal intensity by a factor 20. The use of the neutron guides...
The last two decades have seen the demonstration of the feasibility of neutron diffraction in fields as high as 40 T with the development of dedicated pulsed field devices based either on short or long duration pulsed magnets [1, 2]. These breakthroughs have allowed to extend the field limits beyond current superconducting (15 T split, 17 T solenoid) and resistive installations already...
Pressure is next to temperature the key thermodynamic parameter for the exploration of condensed matter. In this talk I will survey the state of the art of high pressure neutron scattering, covering both diffraction and inelastic scattering. I will focus on more recent methods able to reach pressures of 10 GPa and beyond, relevant for research on hard condensed matter. My talk will be largely...
Non-volatile and tunable non-collinear magnetic structures in thin films are gaining increasing importance for several spintronics applications, such as triplet spin-valves, or devices based on the topological Hall effect. Non-volatile non-collinearity can be tailored in heterostructures that exhibit exchange bias or long-range couplings, as the RKKY. We report on the experimental observation...
The Jülich Centre for Neutron Science offers the opportunity to fabricate thin film samples by Molecular Beam Epitaxy (MBE). We are running an MBE setup with effusion cells, electron guns for electron beam evaporation and a plasma source for use with oxygen or nitrogen. A large variety of deposition materials can be used. Please express your ideas! In the past, we have produced simple Fe...