Ochre and related mineral pigments offer a fascinating insight into our deep past to examine cultural exchange, production methods and technical approaches. Analysis of Indigenous Australian ochre pigments on a variety of cultural materials such as boomerangs, bark paintings and rock art, reveals its composition, structure, and provenance. Recent archaeological science research at the...
Multiple bimetallic split-ear pommel swords from Northwestern Iran dated to the Iron Age (ca. 1250-800 BC) were investigated with Neutron Tomography at ISIS Neutron and Muon Source, UK. It is the first time that Iranian swords from that period were investigated with neutron techniques. The weapons were seized as part of law enforcement investigations and are pending repatriation. These...
Determination of chemical composition can be a useful tool in provenance research of archaeological finds. The two fundamental levels of archaeometric investigation are the material characterization (i.e., the type of the matter) and the provenance identification (i.e., the source of the matter). Polished stone artefacts are especially appropriate subjects for the provenance approach since...
Provenance research, i.e. identification of possible raw material sources of various archaeological objects, preferably using non-destructive methods, is a major task in Heritage Science. Prompt-gamma activation analysis (PGAA) turned out to be successful in provenance research of obsidians. Since the early 2000s, a significant database has been built at the Budapest Neutron Centre, which...