Conveners
MLZ Users 2020 - Quantum Phenomena: Part 1/3
- Robert Georgii
- Yixi Su (JCNS-MLZ)
MLZ Users 2020 - Quantum Phenomena: Part 2/3
- Yixi Su (JCNS-MLZ)
- Robert Georgii
MLZ Users 2020 - Quantum Phenomena: Part 3/3
- Robert Georgii
- Yixi Su (JCNS-MLZ)
Ludwigites are oxyborate compounds with the general formula $M_2^{2+}M^{\prime{\kern.5pt}3+}$BO$_5$. Their structure consists of low-dimensional zigzag walls with triangular motifs, making them an interesting playground for the realization of magnetic frustration on quasi-low-dimensional lattices. Of particular interest are copper ludwigites, in which the divalent transition-metal ion is...
Inelastic neutron scattering studies of the spin dynamics of archetypical ferromagnets have been conducted since the invention of those methods. However, the results were limited to relatively large momentum transfers q by experimental difficulties, mainly the coarse resolution of modern TAS or TOF instruments. Utilizing the modern method, a neutron resonance spin echo technique, we...
Magnetic anisotropy does not only play a vital role in the formation and stability of long-range magnetic orders but also affects the ability to manipulate such spin structures. Via case studies, I show how competition of single-ion anisotropies at different magnetic sites can lead to unconventional magnetic orders and how modulation vectors of magnetic spirals can be controlled by tuning anisotropy.
Magnetic excitations in the spin-stripe phases of La-based 214-nickelates have been vigorously explored using INS for almost last three decades and still have remained an exciting research field, especially to understand their differences yet of their structural similarities with high-T$_c$ 214-cuprates. In view of the reported two-dimensional antiferromagnetic nature, out-of-plane...
In the last few years, Mn3Sn has shown a large interest in condensed matter physics community due to the Weyl Semimetallic nature of this compound. Due to the emergent Berry flux from the Weyl points, Mn3Sn shows interesting properties like Anomalous Hall Effect, Chiral magnetic effect, and other non-local transport properties.
Along with exotic transport properties, this material shows...
Recently, the discovery of superconductivity in the Sr-doped nickelates RNiO$_2$ (R = Pr, Nd) has attracted widespread attention. The synthesis of the RNiO2 compounds has been achieved by topotactic reduction of the non-superconducting perovskite phase RNiO$_3$, removing oxygen from the crystal lattice in a controlled fashion. Remarkably, new electronic and magnetic phases can also occur in...
We report neutron-scattering and ac magnetic susceptibility measurements of the two-dimensional spin-1/2 frustrated magnet BaCdVO(PO4)2. At temperatures well below TN≈1K, we show that only 34% of the spin moment orders in an up-up-down-down stripe structure. Dominant magnetic diffuse scattering and comparison to published muon−spin−rotation measurements indicates that the remaining 66% is...
Pyrochlore antiferromagnets (AFM) Gd$_2$$T_2$O$_7$ ($T$: tetravalent metal elements) are prototypical materials for realizing classical spin liquid states. However, most of them have been observed to show long-range magnetic order. Previous studies show that Gd$_2$Hf$_2$O$_7$ has Curie-Weiss temperature $\approx-7.3$ K and a tiny sharp peak on the top of a large broad maximum in the specific...
Noncentrosymmetric (NCS) materials present an interesting environment for superconductivity, as parity is no longer a conserved quantity, leading to the possibility of superconducting systems with a superposition of s-wave and p-wave states. Such systems are predicted to have unusual properties, such as large Pauli limiting fields and ‘helical’ vortex states. The dependence of the superfluid...