Speaker
Description
Co-nonsolvency occurs if a mixture of two good solvents causes the collapse or demixing of polymers into a polymer-rich and solvent-rich phase in a certain range of compositions of these two solvents. The nonionic thermo-responsive polymer, poly(N-isopropylmethacrylamide) (PNIPMAM), which features a lower critical solution temperature (LCST) in aqueous solution, has been widely used to investigate its collapse transition behavior in a mixture of two competing good solvents. However, co-nonsolvency response of its block copolymer containing the zwitterionic poly(sulfobetaine)s, especially poly(4-((3-methacrylamidopropyl)dimethyllammonio)butane-1-sulfonate)) (PSBP), which exhibits an lower upper critical solution temperature (UCST) and shows a strong swelling transition in aqueous media, is newly studied. We focus on the co-nonsolvency behavior of PSBP-b-PNIPMAM thin films in water/acetone mixtures by in situ time-of-flight neutron reflectometry (TOF-NR) and spectral reflectance (SR). Furthermore, Fourier transform infrared (FT-IR) spectroscopy is applied to investigate the interactions between the polymer thin film and water/co-solvent, which is closely related to their deuteration level.