Quirem Medical BV, a Terumo company, is the manufacturer and supplier of holmium-166 (Ho-166) microspheres. These radioactive microspheres are used for Selective Internal Radiation Therapy (SIRT) which is one of the treatment options for liver tumors. Via placement of a micro-catheter in the liver artery of the patient, the microspheres are injected into the blood stream. These microspheres...
The myelin sheath is an essential part of the nervous system, which enables rapid signal conduction. Damage of this complex membrane system results in demyelinating diseases such as multiple sclerosis (MS). The process in which myelin is generated in vivo is called myelination. In our study, we investigated the adhesion process of large unilamellar vesicles with a supported membrane bilayer...
To cover the energy supply with renewable energies is a challenge of local and temporal distribution of renewable sources that requires energy storage technologies. Complex hydrides, which contain ions such as BH4- and NH2-, have a high hydrogen capacity and therefore are candidates for solid state hydrogen storage materials. Many studies reported the improvement of hydrogen reaction in...
Optimization of computation time has always been a challenge in the world of computation. In this work, we address the computation of X-Ray and neutron scattering data from molecular dynamics simulations. There are multiple software solutions available for this; we have chosen sassena for our work. Sassena inherits distributed memory parallelization (MPI) from its previous version. This work...
Acid-base catalysis, which involves one or more proton transfer reactions, is a chemical mechanism commonly employed by many enzymes. The molecular basis for catalysis is often derived from structures determined at the optimal pH for enzyme activity. However, direct observation of protons from experimental structures is quite difficult; thus, a complete mechanistic description for most enzymes...
The magnetic state of exchanged biased CoO(20nm)/Co($d_F$) bilayers ($d_F$=5-20nm) was studied by means of polarized neutron reflectometry. By introducing a Nb(20nm) spacer layer between the CoO/Co bilayer and the Al$_2$O$_3$ substrate, we designed a resonator structure with significantly enhanced intensity of the spin-flip (SF) scattering at the position of the optical resonances. For the...
After exposure to mixed water/cosolvent vapor, hydrated thin films of stimuli-responsive block copolymers with PNIPAM or PNIPMAM blocks exhibit a co-nonsolvency behavior. In a rapid film contraction, in either system, both water and cosolvent are expelled. Film swelling and contraction kinetics from saturated vapor are investigated in time-of-flight neutron reflectometry (ToF-NR) with...
The availability of large high-quality single crystals is an important rerequisite for many studies in solid-state research. The optical floating-zone technique is an elegant method to grow such crystals, offering potential to prepare samples that may be hardly accessible with other techniques. As elaborated in this presentation, examples include single crystals with intentional compositional...
The polycrystalline Co-base superalloy CoWAlloy1 provides a high potential for high temperature applications as wrought alloy due to a high $\gamma$' precipitate fraction and $\gamma$/$\gamma$' lattice misfit which lead to excellent creep properties. However, cracking occurs during hot rolling. Therefore, this study investigated the origins of crack formation during processing.
Compression...
The photon and neutron science community encompasses users from a broad range of scientific disciplines. With the advent of high speed detectors and increasingly complex instrumentation, the user community faces a common need for high-level, rapid data analysis and the challenge of implementing research data management for increasingly large and complex datasets. The aim of DAPHNE4NFDI is to...
Predicting helium retention in tungsten is of relevance for future nuclear fusion reactors as it influences tritium uptake and transport, the latter effects being a critical question to achieve tritium self-sufficiency.
While the macroscopic effects of helium agglomeration in tungsten are known it is still an open topic of discussion what the underlying processes on a microscopic scale are....
In organic photovoltaics, donor - acceptor bulk heterojunctions are often used as active layer due to their superior performance compared to e.g. planar structured devices. In this optically active polymer layer, photons are absorbed, excitons are created, subsequently dissipated at a material interface and hence free charges are provided. A promising low-bandgap electron donor material is the...
The advent of solid-state batteries has spawned a recent increase in interest in lithium conducting solid electrolytes, especially in the lithium thiophosphates. However, many open questions remain when trying to optimize electrolytes and understand solid state battery chemistries.
In this presentation, we will show how an understanding of the structure-transport properties of the lithium...
We propose a method for kinetic neutron reflectometry with a time resolution of a few µs. The method is based on periodic excitation of the sample and phase locked modulation of the beam intensity by one radio frequency spin flipper, and requires a position sensitive neutron detector with time resolution also in the order of 1 µs. The output are time resolved reflectivity curves locked to the...
Neutron diffraction is used to establish room temperature magnetic ordering within a laminar, MAX phase material, for the first time. This finding is the first "building block" within our search for 2D magnetic materials. A coexistence between FM and antiferromagnetic (AFM) ordering is found at 1.5 K, in agreement with previous DFT calculations.
In this presentation I will show examples of using in situ powder diffraction to simultaneously access the structure and adsorption properties of a small pore crystalline solid. (Quasi)-equilibrium isotherms and isobars can be built directly from sequential Rietveld refinements, both on adsorption and desorption, thus addressing the hysteresis and kinetics of gas adsorption/desorption....
The model perovskite SrTiO$_{3}$ is well-known for its strongly anharmonic phonon properties underlying the intriguing physics of soft phonon modes. A plethora of unusual thermal transport properties derive from the interplay of ferroelectricity, phonon softening, quantum fluctuations and topological properties, including Poiseuille flow of phonons and the elusive coupling of phonons in...
Since the discovery of charge disproportionation in the FeO$_2$ square-lattice compound Sr$_3$Fe$_2$O$_7$ by Mössbauer spectroscopy more than fifty years ago, the spatial ordering pattern of the disproportionated charges has remained “hidden” to conventional diffraction probes, despite numerous x-ray and neutron scattering studies. We have used neutron Larmor diffraction and Fe $K$-edge...
Microgels are macromolecular networks swollen by the solvent they are dissolved in. They are unique systems that are distinctly different from common colloids, such as, e.g., rigid nanoparticles, flexible macromolecules, micelles or vesicles. When swollen, they are soft and have a fuzzy surface with dangling chains and the presence of cross-links provides structural integrity - in contrast to...
The quantum spin systems Cu2MBO5 (M = Al, Ga) with the ludwigite crystal structure consist of a structurally ordered Cu2+ sublattice in the form of three-leg ladders, interpenetrated by a structurally disordered sublattice with a statistically random site occupation by magnetic Cu2+ and nonmagnetic Ga3+ or Al3+...
Amorphous magnetic materials are of considerable interest, both from a fundamental and applied point of view. The low coercive field in an amorphous magnet is an important property for its application as a core material in electrical transformers. The structural and magnetic properties of amorphous magnetic systems can be quite complex. The presence of structural as well as magnetic disorder...
Magnesium alloys have the advantages of low density, high specific strength and specific stiffness, so they have been widely used in many fields, such as aerospace, aerospace, automobile and electronic products, etc [1,2]. However, the application of magnesium alloys is limited because of the low modulus, low strength and poor plasticity at room temperature. In recent years, it has been found...
Nematicity is ubiquitous in electronic phases of high-$T_c$ superconductors, particularly in the Fe-based systems. We used inelastic neutron and x-ray scattering to extract the temperature-dependent nematic correlation length $\xi$ from the anomalous softening of acoustic phonon modes in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and FeSe. In all cases, we find that $\xi$ is well described by a power law...
In the last two years we improved our understanding of sputtering process parameters leading to (Ni,Ti) supermirror coatings with reduced mechanical stress and higher reflectivity. This knowledge has been applied to the case of non-depolarizing m=2 (Cu,Ti) supermirrors, which have been successfully prepared with the standard DC magnetron sputtering facility of the FRM II neutron optics group....
Recently developed event-driven detectors are capable of registering spots of light induced by neutron interactions in scintillator materials. Reconstructing the Center-of-Mass of the individual interactions, it is possible to significantly enhance spatial and temporal resolution of recorded radiographs. Utilizing this principle, we present a detector capable of Time-of-Flight imaging with an...
Transition metal oxides display versatile magnetic phenomena that are mediated by various exchange mechanisms thanks to the localized d-electrons Perovskite manganese oxides (manganates) are archetypal examples of such magnetic transition metal oxides. In manganates, the super-exchange and double-exchange interactions play a major role in determining the magnetic phase. The relative strength...
The small-angle neutron scattering (SANS) on the rat lymphocyte nuclei demonstrates the bi-fractal nature of the chromatin structural organization. The measurements were carried out at the KWS-3 instrument in the momentum transfer range $[ 10^{-3} - 9 \cdot 10^{-2}]$ nm$^{-1}$ and at the KWS-2 instrument in the momentum transfer range $[9 \cdot 10^{-2} - 2]$ nm$^{-1}$ at MLZ, Garching,...
We report a new, simplified approach for analysis of grazing incidence scattering
measurements used to investigate supported lipid bilayers on hexagonal arrays of
nanowires. The method exploits measurements of different physical structures or different scattering contrasts in studies of a fixed array of nanowires. The ratio of the intensity at peaks can be calculated for models simply as a...
The structural complexities in the Na0.5Bi0.5TiO3 (NBT)-based Pb-free piezoelectrics pose significant challenge regarding understanding of the structure-property correlation. While the critical compositions exhibiting maximum weak-signal piezoelectric response is generally associated to an inter-ferroelectric instability, a combined neutron diffraction and piezoelectric study on three...
Process-induced residual stresses (RS), which are induced as a result of plastic deformation, can lead to plastic anisotropy effects caused by intergranular strains. The strict application of diffraction elastic constants (DEC) to calculate phase-specific RS, as tabulated for many material phases in literature, can lead to arguably erroneous RS calculations. These plastic anisotropy effects...
The goal of the BMBF funded project HiMat is the optimization of an innovative testing machine to perform deformation experiments at high temperatures at various instruments at the research neutron source Heinz Maier-Leibnitz. With diffraction, small-angle scattering and radiography (tomography) it is possible to investigate forming phases, their volume fractions as well as size and shape,...
During the 1970s parity non-conserving spin rotations where first observed in the neutron nucleus weak interaction [1]. In these experiments transversally polarized neutrons were passed through certain nuclear targets, upon which the neutron spin was rotated around the flight direction. Due to the conservation of total angular momentum this spin rotation has to be compensated in some manner....
Metal Additive manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) enable the fabrication of complex structures, giving rise to potential improvements in component and manufacturing efficiency. However, the processes are typically characterized by the generation of high magnitude residual stresses which can have detrimental consequences for subsequent applications....
Upon heating through the cloud point, poly(N-isopropylacrylamide) (PNIPAM) in aqueous solution forms long-lived dispersions of mesoglobules. At atmospheric pressure, these mesoglobules are small and strongly dehydrated, and their further growth and coalescence are hindered by the viscoelastic effect. On the contrary, at high pressures, large, water-rich aggregates are formed by PNIPAM [1]....
A Positron-Electron eXperiment (APEX) aims to produce a magnetically confined, low temperature positron-electron plasma in order to test predictions that such a system with equal mass but oppositely charged species, in contrast to nearly all laboratory and astrophysical plasma, is remarkably stable and exhibits other unique plasma characteristics. The magnetic trap consists of a levitated...
Multiferroic Ba$_{2}$CoGe$_{2}$O$_{7}$ belongs to the square lattice Heisenberg antiferromagnets (SLHAF), which exhibit rich quantum phase diagrams of exchange interactions, Dzyaloshinskii-Moriya interactions with the external magnetic or electric fields, but the correlation between single-ion anisotropy and the magnetic field has remain hitherto unexplored through experimental findings in...
This study investigates the role of charged lipids in the plasma membrane with respect to the interaction of the antiviral saponin glycyrrhizin with such membranes. Glycyrrhizin is a natural triterpenic-based surfactant found in licorice. Vesicles made of 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1’-glycerol) (DOPG)/glycyrrhizin are characterized by small-angle scattering with neutrons and X-rays...
For the PERC Collaboration.
The Proton Electron Radiation Channel (PERC) instrument aims to measure several observables in neutron decay with unprecedented precision. It will serve to determine parameters within the Standard Model of particle physics and to search for novel scalar and tensor interaction beyond it. Together with precision measurements of the neutron lifetime, results will be...
CuTi-based glass forming alloys feature a large undercooled liquid region and a high glass-forming ability, which makes them interesting materials particularly for biomedical and lightweight applications. However, for the development of alloy compositions with optimized glass-forming abilities, the relevant mechanisms on the atomic scale are still to be explored. For a fundamental...
It is well known, the properties of magnetic fluids can be controlled by external magnetic field. However, inhomogeneous distribution of magnetic particles in non-polar ferrofluids was observed recently under external electric fields and formation of large aggregates was concluded in such systems. It was shown that aggregation process depends on the magnitude of the DC electric field, and in...
Gallium nitride (GaN) and related alloys [(AlGaIn)N] are promising materials for next generation power electronics. For GaN, for example, because of its wide bandgap, high saturation electron velocity, sufficient thermal conductivity, and high breakdown voltage, it yields a higher figure of merit compared with that of other semiconductors for power devices such as Si and SiC. The presence of...
The Pulsed Low-Energy Positron System PLEPS [1] is a user facility for defect depth-profiling by means of positron lifetime measurements with a monochromatic pulsed positron beam of variable energy ranging from 0.5-21 keV at the intense positron source NEPOMUC at the MLZ in Garching [2].
To further extend the scope of defect characterization of PLEPS various possibilities of in-situ...
Novel electronic phases such as nematic electronic textures or unconventional superconductivity (SC) are frequently observed near zero-temperature magnetic instabilities that arise as a function of a non-thermal control parameter such as pressure. Although it is widely believed that the abundant magnetic fluctuations associated with these quantum phase transitions (QPT) are at the origin of...
Neutron scattering experiments involving soft matter materials often require specific contrast to observe different parts of the materials. In order to increase the availability of deuterium labelled materials, we are currently establishing deuteration support to MLZ users. Our main synthetic focus at the JCNS-1 is in the area of polymers and ethoxylation (e.g. surfactants). We have recently...
Low-energy positron beams can only be handled inside of high vacuum chambers. As ordinary electronic construction relies on a suite of materials which is not compatible with ultra-high vacuum it is necessary for conventional electronics to be installed on the outside of experimental chambers and beamlines. In this talk we'll showcase our most recent endeavors in overcoming this limitation by...
Highly crosslinked polyamide (PA) membranes are extensively used in water purification and desalination by reverse osmosis (RO). The talk will present an overview of our recent work on the structure and dynamics of PA membranes, with a combination of neutron and X-ray reflectivity, and neutron spectroscopy. The membranes were synthesised by established interfacial polymerisation routes of...
Lithium metal batteries are next generation energy storage devices that rely on the stable electrodeposition of lithium metal during the charging process. In this work, we investigate the effect of polymer dynamics on lithium metal deposition. For this, we design electrolyte (solvent) blocking perfluoro polyether polymer networks with evenly spaced H-bonding sites of various strengths,...
Austempered ductile iron (ADI) is an attractive material with excellent mechanical properties, like high strength, good ductility, wear resistance and fatigue strength. Its mechanical properties are largely determined by the ausferritic microstructure which contains retained high carbon enriched austenite. The retained austenite will become unstable under plastic deformation and will transform...
A modified quenching and deformation dilatometer (TA instruments DIL 805A/
D/T) is now in operation at the Heinz Maier-Leibnitz Zentrum (MLZ, Germany)
neutron center. It is customized for running neutron scattering measurements
during the temperature/deformation treatment of the sample, in particular
neutron diffraction (phase, texture, and lattice strain) and neutron small...
Molybdenum Nitride (MoNx) films are investigated as hole-selective layer of crystal Si solar cells due to having a proper work function (5.62 eV) and high conductivity (2000 S/cm). The hole-selectivity so far is limited by the poor surface passivation, which is highly correlated to the interface structure between Si and MoNx. The open circuit voltage and fill factor of devices with thicker...
Metal halide perovskite light-emitting diodes (PeLEDs) are regarded as alternative candidates for next-generation display technologies due to their high efficiency, superior color purity and tunable bandgap. However, PeLEDs based on isotropic perovskite emitting layers with randomly oriented emissive transition dipole moments (TDMs) remain to be inefficient to get upper limit efficiencies of...
Non-fullerene organic solar cells have undergone significant improvements via both, synthesis of novel organic synthesis materials and application of easy fabrication methods. However, device degradtion is still a major problem. For example, the peeling-off of the top electrode fabricated by thermal evaporation leads to an intrinsic device degradation, which is one ofamong the main reasons for...
Multilayers composed of heavy metals and ferromagnets with strong perpendicular anisotropy are potential candidates for magnetic memory applications [1,2]. Magnetic skyrmions in particular may enable ultra-dense storage devices due to their extremely low spin currents [2]. Pt/Co-based multilayers generally exhibit worm domains, which can nucleate into domains of skyrmions through...
Layered Fe/MgO/Cr/MgO/Fe nanostructures are an artificial ferromagnetic material in which the exchange interaction of magnetic moments of Fe layers through intermediate dielectric and metal layers can lead to magnetic configurations that are not realized in the well-studied Fe/MgO/Fe and Fe/Cr/Fe systems. The correlation between the structural and magnetic properties of layered Fe(10...
The creation of extreme conditions on the sample by means of high external pressure together with changes in the magnetic field and temperature allows to obtain the comprehensive amount of experimental data for a detailed description of the internal properties of materials.
We investigated the Mn$_{1-x}$Fe$_{x}$Ge compounds, which crystallize into a noncentrosymmetric cubic structure of the...
The solid electrolyte interphase (SEI) is a solid protective barrier that forms at the surface of lithium-ion batteries (LIB) operating outside the stability range of the electrolyte. In particular, that happens at the anode where Li metal reduces the liquid electrolyte forming a solid mixture of inorganic and organic components during the lithiation reaction [1]. A good barrier layer...
The saponin aescin can be extracted from the horse chestnut tree and is known for its anti-inflammatory and anti-oedematous properties. Using small, unilamellar lipid vesicle (SUV) as model membrane, we study the mixing properties of aescin with the phospholipid 1,2-dioleoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (DOPG) by using small-angle neutron scattering (SANS), small- and wide-angle...
Layer formation and annealing of nanoparticles especially colloidal inks applied to porous materials is very relevant for functional coatings and printing. The goal is to distinguish and quantify the differences in structure formation during annealing of deposited colloidal inks on a porous and a solid material. Therefore, we compare two different substrates: As porous template we use a layer...
Lithium-Ion Batteries turned out as an indispensable energy supplier in modern society which however suffers from safety concerns due to the flammability of the liquid electrolyte. Solid polymer electrolytes (SPEs) can bypass this obstacle and therefore represent a serious alternative to conventional electrolytes. Especially single-ion conducting polymers (SICPs), which have the anion...
High-performance energy storage solutions are a basic prerequisite for efficient portable devices and the electrification of the transport sector, and by this reaching the CO$_{2}$ emission targets. The market and progress demand for advances in electrochemical energy storage and a promising approach towards advanced batteries is the so-called all solid state battery concept, where the liquid...
Due to their application potential for new types of memory devices, the research on multiferroic materials has attracted strong interest during the last decades. A prominent mechanism that drives multiferroic behavior is given by the inverse Dzyaloshinskii-Moriya interaction, which yields the shift of a non-magnetic ligand ion due to a non-collinear magnetic structure. It was shown on a...
A low-temperature routine to realize inorganic amorphous electron-transport layers (ETLs) is of great importance for the commercialization of perovskite solar cells. The fabrication of ETLs at low temperature is energy saving and compatible with flexible substrates. In this work, titanium thin films are synthesized at low temperature (below 100 ℃) with a polymer template sol-gel method based...
Interfaces based on metal oxides play a major role in functional materials for energy applications. For example, TiO2 can serve as a photocatalyst in the production of hydrogen or as an anode material in emerging solar cell and battery technologies. In most applications, a designed structure is highly de-sired to fulfill performance conditions on different length scales. Moreover, devices...
For the mechanical characterization of the adhesive bond of pressure-sensitive adhesives one has to take into account the geometry of the adherents and the kind of stress applied. We present a technique, which is especially adapted for the measurement of tack for assemblies of fibers coated with pressure-sensitive adhesives using customized cylindrical composite stamps [1]. Key element of the...
There are various methods for diffraction pattern calculation of powders, differing in Q-averaging procedures. Three of these were studied in detail: (1) The structure factor formula sums up all the hkl planes for a Q-vectors despite their respective orientations. Only peak intensities are calculated and the peak shape is arbitrary. (2) A Monte Carlo (MC) method of averaging used i.a. by the...
The PERC facility is currently under construction at the MEPHISTO beamline of the FRM II. It will serve as an intense and clean source of electrons and protons from neutron beta decay for precision studies. It aims to improve the measurements of the properties of weak interaction by one order of magnitude and to search for new physics via new effective couplings.
PERC's central component is...
Au/TiO2 nanohybrid materials have attracted significant attention due to the outstanding optical, photocatalytic and photovoltaic performance. We use customized polymer templating to achieve TiO2 nanostructures with different morphologies. Au/TiO2 hybrid thin films are fabricated by sputter deposition. An in-depth understanding of the Au morphology on the TiO2 templates is achieved with in...
Fast neutrons offer high penetration capabilities for both light and dense materials due to their comparatively low interaction cross-sections, making them ideal for the imaging of large-scale objects such as as-built plane turbines, for which X-rays or thermal neutrons do not provide sufficient penetration. However, inefficient fast neutron detection limits the widespread application of this...
Metal alloys as anode material for lithium ion batteries such as LiAl offer a high theoretical capacity in relation to their low cost. Compared to the conventional graphite anode, aluminium has an almost three times higher specific capacity with 993 mAh/g. During lithiation, aluminium first forms a solid solution with lithium called the alpha-LiAl phase until the solubility limit is reached....
With an increase in renewable energy production, the problem of energy storage becomes more and more significant. One of the most promising ideas is storage in form of hydrogen gas, which involves the production of hydrogen by electrolysis and later its reconversion into electricity in fuel cells. It is of great importance for these processes to be carried out most efficiently with the most...
The combination of dimethyl sulfoxide (DMSO)-solvent doping and physical-chemical DMSO/salt de-doping in a sequence has been used to improve the thermoelectric (TE) properties of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) films. A high power factor of ca.105.2 µW m-1 K-2 has been achieved for the PEDOT:PSS film after post-treatment with 10 % sodium sulfite (Na2SO3)...
Developing clean energy lies the heart of sustainable development of human society. Triboelectric nanogenerator (TENG) originating from Maxwell’s displacement current is a new type of energy harvester for harnessing ambient mechanical energy based on the coupling of triboelectrification and electrostatic induction effect. Compared with other counterparts, owing to the light-weight, low-cost,...
Rechargeable lithium metal batteries have been recognized one of the most promising energy storage devices due to their superior energy density. However, serious safety concern and poor cyclability are featured originating from uncontrolled lithium dendrite growth and unstable solid electrolyte interface (SEI) layer. One strategy to suppress dendrite growth is surface modification with...
The interest in all-solid-state lithium batteries mainly originates from its high safety and energy density compared with conventional Li-ion batteries. Solid polymer electrolytes (SPEs) as an essential component with high durability, long shelf life, high energy density, great flexibility for cell design and low weight are considered as the most promising material for next generation...
Thin film samples for neutron investigation can be fabricated with a Molecular Beam Epitaxy (MBE) setup on site. The MBE setup is part of the additional facilities which can be booked in combination with a neutron instrument proposal at MLZ. Discuss your ideas with the thin film lab staff and then write a proposal. There are two options for access: In remote access the thin film staff...
Molecular dynamics simulations are an important tool in evaluating scattering data. They have a high potential, which is even further increasing with the ever increasing computation power and isn't yet fully exploited. For some systems, reliable simulations are already available that are compatible with measured data. For other systems, however, the agreement between simulation and experiment...
The implementation of decommissioning tasks requires accurate radiological characterization to be accomplished. Often, computational codes are used to complement experimental radiological characterization campaigns. These activation codes need accurate knowledge of elemental composition of non-irradiated materials. Besides determination of most nuclides by the well-established Inductively...
Cellulose nanofibrils (CNF), extracted from wood, are sustainable materials par excellence and used to fabricate high-strength materials. A promising route for fabricating porous CNF films on large scale is spray deposition using water-based technologies; the resulting porous CNF templates are excellent candidates to infiltrate conductive polymers and plasmon-active nanoparticles for...
Latest research has revealed promising results for silicon (Si) and germanium (Ge) as anode materials for lithium-ion batteries (LIBs). Owing to their high energy capacity these two group 14 semiconductors are considered as auspicious alternatives to graphite anodes in LIBs. In this study, we set the goal of synthesizing a porous silicon-germanium structure over a well-known wet chemical...
Co-nonsolvency occurs if a mixture of two good solvents causes the collapse or demixing of polymers into a polymer-rich phase in a certain range of compositions of these two solvents. The nonionic thermo-responsive polymer, poly(isopropylmethacrylamide) (PNIPMAM), which features a lower critical solution temperature (LCST) in aqueous solution, has been widely used to investigate its collapse...
Cooperative dehydration is a major driving force for the demixing transition in poly(N-isopropylacrylamide) (PNIPAM), causing the polymer chains to collapse at the cloud point, followed by aggregation in aqueous solution. The motion of the hydration water is slowed down compared to bulk water and it is crucial in the solvation behavior in the presence of a co-solvent such as methanol. QENS...
Nanoscale assemblies in water of novel thermoresponsive and double hydrophilic poly(N-isopropylacrylamide)-block-poly(oligo ethylene glycol methyl ether acrylate) (PNIPAM-b-POEGA) copolymers have been investigated by synergy of Fourier transform infrared (FTIR) spectroscopy and small angle neutron scattering (SANS) experiments. By focusing on the influence of temperature as external stimulus...
In this work, we present a combined analysis of small angle neutron scattering (SANS), linear rheology and neutron spin eco (NSE) spectroscopy experiments on the supramolecular association and chain structure of supramolecular polymer blends. These consist of well-defined hydrogenated (H) polymers with a polyethylene oxide (PEO) backbone carrying the directed homocomplementary hydrogen-bonding...
Graphite and materials made of graphite have historically been of huge technological importance due to their manifold interesting properties. High performance lithium-ion batteries (LIBs) typically use graphite-based anode materials. The energy storage is achieved through the reversible reaction of the graphite with lithium ions in an electrochemical intercalation reaction. When the material...
We propose to measure a parity-odd asymmetry A in the forward scattering amplitude for neutrons on the p-wave resonance in 139La at 0.73 eV from the correlation k•I, where k is the neutron momentum and I is the spin of the nucleus. One motivation is to take another step towards a future time reversal (T) violation experiment in polarized neutron transmission through polarized 139La [1]. The...
Perovskite solar cells have been the subject of several studies aimed at increasing their operational stability, but few have looked at the underlying degradation mechanisms. The influence of the environment on the performance of devices during operation has been neglected in previous studies [4]. Using synchrotron radiation-based operando grazing-incidence X-ray scattering techniques, we...
Perovskite solar cells (PSCs) have attracted increasing attention in research and industry due to their high efficiency, low material cost and simple solution-based fabrication process, which allow the manufacture of thin, flexible photovoltaic modules.
In laboratory devices, the efficiency already exceeds 25% and is comparable with c-Si.[1] However, one of the most important steps towards...