Warning: We observe an increase of emails from fake travel portals like . "travelhosting.co.uk". We never send links to such portals so be vigilant!

17–19 Sept 2018
Fakultät für Maschinenwesen der Technischen Universität München
Europe/Berlin timezone

Static magnetic proximity effects and spin Hall magnetoresistance in Pt/Y$_3$Fe$_5$O$_{12}$

18 Sept 2018, 11:45
15m
MW 0001 (Fakultät für Maschinenwesen)

MW 0001

Fakultät für Maschinenwesen

Talk P4 Magnetism and quantum phenomena Parallel session 4

Speaker

Dr Stephan Geprägs (Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften)

Description

Heavy metal/ferromagnetic insulator (HM/FMI) heterostructures provide a unique platform for the generation and detection of pure spin currents in the fields of spintronics and spin caloritronics. In these HM/FMI heterostructures, the transport of the spin current across the HM/FMI interface is of key importance. Thereby the quality of the interface highly affects the interfacial interaction between the angular momentum and the HM conduction electrons.
To investigate possible intermixing effects in HM/FMI heterostructures, we study Pt/Y$_3$Fe$_5$O$_{12}$ bilayers with differently arranged layers and different interface properties using x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity combined with magnetotransport studies. For standard Pt/Y$_3$Fe$_5$O$_{12}$ bilayer samples with sharp and clean interfaces we do not detect any induced magnetic moments in Pt. These samples show an angle-dependent magnetoresistance behavior, which is consistent with the established spin Hall magnetoresistance [1]. In inverted Y$_3$Fe$_5$O$_{12}$ /Pt bilayer samples with gradual and intermixed interfaces, however, Pt displays a finite induced magnetic moment comparable to that of all-metallic Pt/Fe bilayers. In these samples, we find a superposition of the spin Hall magnetoresistance and the anisotropic magnetoresistance. Both effects can be disentangled from each other due to their characteristic temperature dependence.

[1] H. Nakayama et al., Phys. Rev. Lett. 110, 206601 (2013).

Primary authors

Dr Stephan Geprägs (Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften) Dr Christoph Klewe (Advanced Light Source, Lawrence Berkeley National Laboratory) Dr Sibylle Meyer (Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften) Dr Stephan P. Collins (Diamond Light Source Ltd, Harwell Sci & Innovat Campus) Dr Katharina Ollefs (European Synchrotron Radiation Facility (ESRF)) Dr Fabrice Wilhelm (European Synchrotron Radiation Facility (ESRF)) Dr Andrei Rogalev (European Synchrotron Radiation Facility (ESRF)) Prof. Sebastian T. B. Goennenwein (Institut für Festkörper- und Materialphysik, Technische Universität Dresden) Dr Matthias Opel (Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften) Dr Timo Kuschel (Center for Spinelectronic Materials and Devices, Department of Physics, Bielefeld University) Prof. Rudolf Gross (Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften)

Presentation materials

There are no materials yet.