Speaker
Description
Lithium-ion batteries (LIBs) have been widely used in many aspects of modern life. Compared with conventional graphite anodes, TiO2 possesses superior cyclic stability and environmental benignity. However, its moderate conductivity and lithium ion migration ability still need to be improved to realize further development. As alternative anode material, SnO2 afforded much higher theoretical specific capacity (1494 mAhg-1) as compared to TiO2. However, the big volume change and the formation of the thick SEI film during the cycling caused serious capacity recession. After comparing the characteristic of TiO2 and SnO2, a novel TiO2/SnO2 composite anode has been designed through amphiphilic block copolymer assisted sol-gel process in the present study. The morphology of the obtained TiO2/SnO2 nanostructures are studied via scanning electron microscopy (SEM), the corresponding crystallization behavior is investigated with X-ray powder diffraction (XRD).