Speaker
Description
Thermoresponsive polymers are an interesting class of material for industrial and medical applications and also for fundamental research. Lower critical solution temperature (LCST) polymers, such as poly(N-isopropylacrylamide), are common and well-studied, whereas materials with an upper critical solution temperature (UCST) still are rare and not well examined. Depending on the material used, the transition temperature can be varied by different parameters, which can enlarge the potential field of applications. Here, not only it is interesting to tailor the temperature, at which the phase transition occurs, also it is interesting to control the type of transition, i.e. from LCST to UCST or vice versa. We synthesized acryl-amide based copolymers that, depending on the composition, display either a LCST behavior, or a UCST-like phase behavior. We used turbidity measurements, static and dynamic light scattering as well as small angle neutron scattering (SANS) to study the phase behavior of our polymers on global and local length scales. In particular, from SANS important information on the polymer structure is accessible.