Warning: We observe an increase of emails from fake travel portals like . "travelhosting.co.uk". We never send links to such portals so be vigilant!

17–19 Sept 2018
Fakultät für Maschinenwesen der Technischen Universität München
Europe/Berlin timezone

Phase diagram and redox behavior of (Nd/Pr)2NiO4+δ electrodes explored by in situ neutron powder and synchrotron single crystal diffraction during electrochemical oxygen intercalation

17 Sept 2018, 12:00
15m
MW 1801 (Fakultät für Maschinenwesen)

MW 1801

Fakultät für Maschinenwesen

Talk MS1 In-situ and in-operando studies with special focus on energy materials and catalysis Micro symposium 1

Speaker

Prof. Werner Paulus (Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM)

Description

Oxygen intercalation/deintercalation in Pr2NiO4+δ and Nd2NiO4+δ was followed by in situ neutron powder and single crystal synchrotron diffraction during electrochemical oxidation/reduction, in dedicated reaction cells [1]. For both systems three phases, all showing the same line-width, were identified.
The starting phases, Pr2NiO4.23 and Nd2NiO4.24, considered with an average orthorhombic Fmmm symmetry, although both show a slight monoclinic distortion, get reduced in a 2-phase reaction step to tetragonal intermediate phases with 0.07 ≤  ≤ 0.10 and P42/ncm space group, which on further reduction transform, again in a 2-phase reaction step, towards the respective stoichiometric (Pr/Nd)2NiO4.0 phases, with Bmab space group. Electrochemical oxidation does, however, not proceed fully reversibly for both cases: while the re-oxidation of Nd2NiO4+δ is limited to the tetragonal intermediate phase with δ = 0.10, the homologous Pr2NiO4+δ can be re-oxidized up to δ = 0.17, showing orthorhombic symmetry. For the intermediate tetragonal phase, we were able to establish for Pr2NiO4.09 complex anharmonic displacement behavior for the Pr2O2 rock salt layer, as analyzed by single crystal neutron diffraction and Maximum Entropy Analysis, in agreement with a low-T diffusion pathway for oxygen ions, activated by low energy phonon modes [2-4].
References:
[1] M. Ceretti, O. Wahyudi, G. André, M. Meven, A. Villesuzanne, W. Paulus, Inorg. Chem. 57,8, 4656-66 (2018)
[2] M. Ceretti, O. Wahyudi, A. Cousson, A. Villesuzanne, M. Meven, B. Pedersen, J. M. Bassat, W. Paulus, J. Mat. Chem. A, 3,42 (2015), 21140-21148
[3] A. Piovano, A. Perrichon, M. Boehm, M. R. Johnson, W. Paulus, Phys. Chem. Chem. Phys., 18 (2016) 17398-17403
[4] Paulus, H. Schober, S. Eibl, M. Johnson, T. Berthier, O. Hernandez, M. Ceretti, M. Plazanet, K. Conder, C. Lamberti, J. Am. Chem. Soc. 130 (47) (2008) 16080-85,

Primary author

Prof. Werner Paulus (Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM)

Co-authors

Dr Olivia Wahyudi (Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France) Dr Monica Ceretti (Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, ) Dr Avishek Maity (Institute for Physical Chemistry, Georg August University Göttingen, Outstation at Heinz Meier Leibniz Zentrum (FRM(II)) Dr Rajesh Dutta (Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM) Dr Martin Meven (Institute of Crystallography, RWTH Aachen University and Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ)) Dr Dmitry Chernyshov (Swiss Norwegian Beamlines SNBL@ESRF)

Presentation materials

There are no materials yet.