Warning: We observe an increase of emails from fake travel portals like . "travelhosting.co.uk". We never send links to such portals so be vigilant!

17–19 Sept 2018
Fakultät für Maschinenwesen der Technischen Universität München
Europe/Berlin timezone

Nuclear resonance scattering polarimetry on single crystals of iron spin crossover compounds

17 Sept 2018, 16:30
1h 30m
Fakultät für Maschinenwesen der Technischen Universität München

Fakultät für Maschinenwesen der Technischen Universität München

Boltzmannstraße 15 85748 Garching b. München
Poster P1 Instrumentation and methods Poster session 1

Speaker

Mrs Lena Scherthan (Department of Physics, Technische Universitaet Kaiserslautern)

Description

The combination of nuclear forward scattering as time-domain synchrotron-based nuclear resonant scattering method with high-purity polarimetry is a novel approach to probe electronic anisotropies in metal-containing compounds ranging from biological molecules to solid state systems.
This method is based on exploring the polarization dependence of the nuclear hyperfine transitions at the 14.4 keV nuclear resonance of 57Fe. The use of a crossed polarizer-analyzer setup [1] allows the suppression of the incident σ-polarized non-resonant photons. Probing thereby single crystals, the magnitude and orientation of the electric field gradient (EFG) at the Mössbauer nucleus produced by charge anisotropies is deliverable.
The application of this method is shown by means of the study of the monoclinic phase of the spin crossover (SCO) complex [Fe(PM-BiA)2(NCS)2] (1). Iron(II) SCO compounds can be switched reversibly from the low spin to the high spin state, e.g. by variation of temperature [2]. The presence of a strong EFG at the Mössbauer nucleus that leads to a pure electric hyperfine interaction was shown by density functional theory calculations and conventional Mössbauer experiments on a powder sample of 1. The realised nuclear resonance scattering polarimetry experiments on a single crystal of 1 have delivered information in terms of magnitude and orientation of the EFG.
[1] B. Marx et al., Phys. Rev. Letters 110, 254801 (2013)
[2] P. Gütlich et al., Angew. Chem. 106, 2109 (1994)

Primary author

Mrs Lena Scherthan (Department of Physics, Technische Universitaet Kaiserslautern)

Co-authors

Dr Juliusz A. Wolny (Department of Physics, Technische Universitaet Kaiserslautern) Dr Faus Isabelle (Department of Physics, Technische Universitaet Kaiserslautern) Dr Olaf Leupold (Deutsches Elektronen-Synchrotron DESY) Dr Kai S. Schulze (Helmholtz-Institut Jena; Institute of Optics and Quantum Electronics) Dr Sebastian Hoefer (Helmholtz-Institut Jena; Institute of Optics and Quantum Electronics) Dr Robert Loetzsch (Helmholtz-Institut Jena; Institute of Optics and Quantum Electronics) Dr Berit Marx-Glowna (Helmholtz-Institut Jena; Institute of Optics and Quantum Electronics) Dr Christopher E. Anson (Institute of Inorganic Chemistry, Karlsruhe Institute of Technology) Prof. Annie K. Powell (Institut fuer Nanotechnologie; Institute of Inorganic Chemistry, Karlsruher Institut fuer Technologie) Dr Ingo Uschmann (Helmholtz-Institut Jena; Institute of Optics and Quantum Electronics) Dr Hans-Christian Wille (Deutsches Elektronen-Synchrotron DESY) Prof. Gerhard Paulus (Helmholtz-Institut Jena; Institute of Optics and Quantum Electronics) Prof. Volker Schuenemann (Department of Physics, Technische Universitaet Kaiserslautern) Prof. Ralf Roehlsberger (Deutsches Elektronen-Synchrotron DESY)

Presentation materials

There are no materials yet.